题目内容

10.已知函数f(x)=$\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$(a>0,a≠1).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)求a的取值范围,使xf(x)>0在定义域上恒成立.

分析 (1)要使函数有意义,只需ax-1≠0;
(2)利用函数奇偶性的定义即可判断;
(3)问题等价于f(x)>0在(0,+∞)上恒成立,对不等式化简可求;

解答 解:(1)由ax-1≠0,解得x≠0,
∴函数f(x)的定义域为{x|x≠0},
(2)f(-x)=$\frac{1}{{a}^{-x}-1}$+$\frac{1}{2}$=$\frac{{a}^{x}}{1-{a}^{x}}$+$\frac{1}{2}$=$\frac{{a}^{x}-1+1}{1-{a}^{x}}$+$\frac{1}{2}$=-$\frac{1}{{a}^{x}-1}$-$\frac{1}{2}$=-($\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$)=-f(x),
∴函数f(x)为奇函数,
(3)∵f(x)为奇函数,
∴xf(x)为偶函数,
∴xf(x)>0在定义域上恒成立问题等价于f(x)>0在(0,+∞)上恒成立,即$\frac{1}{{a}^{x}-1}$$+\frac{1}{2}$>0恒成立,
亦即$\frac{{a}^{x}+1}{2({a}^{x}-1)}$>0,所以ax-1>0即ax>1在(0,+∞)上恒成立,
所以a>1,故实数a的取值范围是(1,+∞).

点评 本题考查函数奇偶性、单调性的判断及其应用,考查恒成立问题,考查转化思想,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网