题目内容
【题目】【2018广东省深中、华附、省实、广雅四校联考】已知椭圆的离心率为,圆与轴交于点, 为椭圆上的动点, , 面积最大值为.
(I)求圆与椭圆的方程;
(II)圆的切线交椭圆于点,求的取值范围.
【答案】(I)圆的方程为,椭圆的方程为.(II)
【解析】【试题分析】(1)根据离心率可有,依题意可知为椭圆的焦点,故.当位于椭圆上顶点时,面积取得最大值,由此列方程可解得的值,并求得圆和椭圆的方程.(2)当直线斜率存在时,设出直线方程为,利用圆和直线相切求得的等量关系式,利用韦达定理和弦长公式计算出弦长并利用配方法求得弦长的取值范围.当直线斜率不存在时,直线的方程为,可直接得到的坐标求出弦长.
【试题解析】
(1)由题意得,解得: ①
因为,所以,点为椭圆的焦点,所以,
设,则,所以,当时,
,代入①解得,所以,
所以,圆的方程为,椭圆的方程为.
(2)①当直线的斜率存在时,设直线的方程为,
因为直线与圆相切,所以,即,
联立,消去可得,
,
令,则,所以,
所以,所以
②当直线的斜率不存在时,直线的方程为,解得,
综上, 的取值范围是.
练习册系列答案
相关题目