题目内容
【题目】涡阳县某华为手机专卖店对市民进行华为手机认可度的调查,在已购买华为手机的名市民中,随机抽取名,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如图:
分组(岁) | 频数 |
合计 |
(1)求频数分布表中、的值,并补全频率分布直方图;
(2)在抽取的这名市民中,从年龄在、内的市民中用分层抽样的方法抽取人参加华为手机宣传活动,现从这人中随机选取人各赠送一部华为手机,求这人中恰有人的年龄在内的概率.
【答案】(1),频率分布直方图见解析;(2).
【解析】
(1)根据分布直方图计算出第二个矩形的面积,乘以可得出的值,再由频数之和为得出的值,利用频数除以样本容量得出第四个矩形的面积,并计算出第四个矩形的高,于此可补全频率分布直方图;
(2)先计算出人中年龄在、内的市民人数分别为、,将年龄在的位市民记为,年龄在的位市民记为、、、,记事件恰有人的年龄在内,列举出所有的基本事件,并确定事件所包含的基本事件数,利用古典概型的概率公式可计算出事件的概率.
(1)由频数分布表和频率分布直方图可知,解得.
频率分布直方图中年龄在内的人数为人,对应的为,
所以补全的频率分布直方图如下图所示:
(2)由频数分布表知,在抽取的人中,年龄在内的市民的人数为,
记为,年龄在内的市民的人数为,分别记为、、、.
从这人中任取人的所有基本事件为:、、、、、、、、、,共个基本事件.
记“恰有人的年龄在内”为事件,则所包含的基本事件有个:、、、,
所以这人中恰有人的年龄在内的概率为.
【题目】已知变量之间的线性回归方程为,且变量之间的一组相关数据如表所示,则下列说法错误的是( )
x | 6 | 8 | 10 | 12 |
y | 6 | m | 3 | 2 |
A. 变量之间呈现负相关关系
B. 的值等于5
C. 变量之间的相关系数
D. 由表格数据知,该回归直线必过点(9,4)
【题目】随着旅游观念的转变和旅游业的发展,国民在旅游休闲方面的投入不断增多,民众对旅游的需求也不断提高,安庆某社区居委会统计了2011至2015年每年春节期间外出旅游的家庭数,具体统计资料如表:
年份(x) | 2011 | 2012 | 2013 | 2014 | 2015 |
家庭数(y) | 6 | 10 | 16 | 22 | 26 |
(1)从这5年中随机抽取两年,求外出旅游的家庭至少有1年多于20个的概率;
(2)利用所给数据,求出春节期间外出旅游的家庭数与年份之间的回归直线方程 ,并判断它们之间是正相关还是负相关;
(3)利用(2)中所求出的回归直线方程估计该社区2016年在春节期间外出旅游的家庭数.
参考公式: , .