题目内容
7.长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则AC1与BB1所成角的正弦值为$\frac{2\sqrt{3}}{3}$.分析 如图所示,连接AC,由B1B∥C1C,可得∠AC1C是异面直线AC1与BB1所成的角,再利用长方体的性质、直角三角形的边角关系即可得出.
解答 解:如图所示,连接AC,
∵B1B∥C1C,
∴∠AC1C是异面直线AC1与BB1所成的角.
在Rt△AC1C中,AC1=$\sqrt{A{B}^{2}+B{C}^{2}+C{{C}_{1}}^{2}}$=$\sqrt{{2}^{2}+{2}^{2}+{1}^{2}}$=3,
AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,
∴sin∠AC1C=$\frac{AC}{A{C}_{1}}$=$\frac{2\sqrt{2}}{3}$,
故答案为:$\frac{2\sqrt{3}}{3}$.
点评 本题考查了异面直线所成的角、长方体的性质、直角三角形的边角关系,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
17.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{{2}^{x},x≥0}\end{array}\right.$,则f(f(-1))=( )
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | -$\frac{1}{4}$ | D. | 2 |
19.假设在3.0秒内的任何时间,两条不相关的短信机会均等地进入同一部手机,若这两条短信进入手机的时间之差小1.0秒,手机就会受到干扰,则手机受到干扰的概率为( )
A. | $\frac{1}{9}$ | B. | $\frac{1}{3}$ | C. | $\frac{5}{9}$ | D. | $\frac{4}{9}$ |
20.cos32°sin62°-sin32°sin28°=( )
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |