题目内容
【题目】在平面直角坐标系中,曲线的参数方程为 (为参数),直线的参数方程为 (为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.
(1)写出直线的普通方程以及曲线的极坐标方程;
(2)若直线与曲线的两个交点分别为,直线与轴的交点为,求的值.
【答案】(1),;(2)1.
【解析】分析:(1)消去参数t可得直线l的普通方程为x+y-1=0.曲线C的直角坐标方程为x2+y2-4y=0.化为极坐标即ρ=4sin θ.
(2)联立直线参数方程与圆的一般方程可得t2-3t+1=0,结合直线参数的几何意义可得|PM|·|PN|=|t1·t2|=1.
详解:(1)直线l的参数方程为(为参数),
消去参数t,得x+y-1=0.
曲线C的参数方程为 (θ为参数),
利用平方关系,得x2+(y-2)2=4,则x2+y2-4y=0.
令ρ2=x2+y2,y=ρsin θ,代入得C的极坐标方程为ρ=4sin θ.
(2)在直线x+y-1=0中,令y=0,得点P(1,0).
把直线l的参数方程代入圆C的方程得t2-3t+1=0,
∴t1+t2=3,t1t2=1.
由直线参数方程的几何意义,|PM|·|PN|=|t1·t2|=1.
【题目】某服装店为庆祝开业“三周年”,举行为期六天的促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,第五天该服装店经理对前五天中参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:
1 | 2 | 3 | 4 | 5 | |
4 | 6 | 10 | 23 | 22 |
(1)若与具有线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)预测第六天的参加抽奖活动的人数(按四舍五入取到整数).
参考公式与参考数据:.
【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.