题目内容

【题目】在△ABC中,角A,B,C的对边分别为 . (Ⅰ)求cosB的值;
(Ⅱ)若 ,求a和c的值.

【答案】解:(Ⅰ)∵cos = , ∴sin =sin( )=
∴cosB=1﹣2sin2 =
(Ⅱ)由 =2可得 accosB=2,又cosB=
故ac=6,
由 b2=a2+c2﹣2accosB 可得a2+c2=12,
∴(a﹣c)2=0,
故 a=c,
∴a=c=
【解析】(1)利用诱导公式求出sin 的值,从而利用二倍角的余弦公式求得cosB.(2)由两个向量的数量积的定义求出ac的值,再利用余弦定理求出a和c的值.
【考点精析】认真审题,首先需要了解同角三角函数基本关系的运用(同角三角函数的基本关系:;(3) 倒数关系:),还要掌握余弦定理的定义(余弦定理:;;)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网