题目内容
(本小题满分14分)
已知函数 ,.
(Ⅰ)当 时,求函数 的最小值;
(Ⅱ)当 时,讨论函数 的单调性;
(Ⅲ)求证:当 时,对任意的 ,且,有.
已知函数 ,.
(Ⅰ)当 时,求函数 的最小值;
(Ⅱ)当 时,讨论函数 的单调性;
(Ⅲ)求证:当 时,对任意的 ,且,有.
解:(Ⅰ)显然函数的定义域为,当.
∴ 当,.
∴在时取得最小值,其最小值为 .----------------------------- 4分
(Ⅱ)∵,-----------5分
∴(1)当时,若为增函数;
为减函数;为增函数.
(2)当时,为增函数;
为减函数;为增函数.------- 9分
(Ⅲ)不妨设,要证明,即证明:
当时,函数.
考查函数-------------------------------------------------10分
在上是增函数,----------------------------------------------------12分
对任意,
所以,命题得证----------14分
∴ 当,.
∴在时取得最小值,其最小值为 .----------------------------- 4分
(Ⅱ)∵,-----------5分
∴(1)当时,若为增函数;
为减函数;为增函数.
(2)当时,为增函数;
为减函数;为增函数.------- 9分
(Ⅲ)不妨设,要证明,即证明:
当时,函数.
考查函数-------------------------------------------------10分
在上是增函数,----------------------------------------------------12分
对任意,
所以,命题得证----------14分
略
练习册系列答案
相关题目