题目内容
【题目】已知函数f(x)=|x﹣a|﹣ x,(a>0). (Ⅰ)若a=3,解关于x的不等式f(x)<0;
(Ⅱ)若对于任意的实数x,不等式f(x)﹣f(x+a)<a2+ 恒成立,求实数a的取值范围.
【答案】解:(Ⅰ)a=3时,f(x)=|x﹣3|﹣ x<0, 即|x﹣3|< x,
两边平方得:(x﹣3)2< x2 ,
解得:2<x<6,
故不等式的解集是{x|2<x<6};
(Ⅱ)f(x)﹣f(x+a)
=|x﹣a|﹣ x﹣|x|+ (x+a)
=|x﹣a|﹣|x|+ ,
若对于任意的实数x,不等式f(x)﹣f(x+a)<a2+ 恒成立,
即|x﹣a|﹣|x|+ <a2+ 对x∈R恒成立,
即a2>|x﹣a|﹣|x|,而|x﹣a|﹣|x|≤|(x﹣a)﹣x|=|a|,
原问题等价于|a|<a2 , 又a>0,
∴a<a2 , 解得a>1
【解析】(Ⅰ)将a的值带入f(x),两边平方求出不等式的解集即可;(Ⅱ)求出f(x)=|x﹣a|﹣|x|+ ,原问题等价于|a|<a2 , 求出a的范围即可.
【题目】某大学高等数学老师这学期分别用两种不同的教学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样)。现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图:
(Ⅰ)依茎叶图判断哪个班的平均分高?
(Ⅱ)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率;
(Ⅲ)学校规定:成绩不低于85分的为优秀,请填写下面的列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
甲班 | 乙班 | 合计 | |
优秀 | |||
不优秀 | |||
合计 |
下面临界值表仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:其中)