题目内容
【题目】已知函数f(x)=xlnx,g(x)= (其中a∈R)
(1)求函数f(x)的极值;
(2)设函数h(x)=f′(x)+g(x)﹣1,试确定h(x)的单调区间及最值;
(3)求证:对于任意的正整数n,均有 > 成立.(注:e为自然对数的底数)
【答案】
(1)解: f(x)=xlnx,(x>0),f′(x)=1+lnx,
令f′(x)>0,解得:x> ,令f′(x)<0,解得:0<x< ,
∴f(x)在(0, )递减,在( ,+∞)递增,
∴f(x)的极小值是f( )=﹣ ;
(2)解:h(x)=f′(x)+g(x)﹣1=lnx+ ,(x>0),
h′(x)= ﹣ = ,
①a≤0时,h′(x)>0,h(x)在(0,+∞)递增,无最值,
②a>0时,令h′(x)>0,解得:x>a,令h′(x)<0,解得:0<x<a,
∴h(x)在(0,a)递减,在(a,+∞)递增,
∴h(x)min=h(a)=1+lna,
(3)证明:取a=1,由(Ⅱ)知,h(x)=lnx+ ≥f(1)=1,
∴ ≥1﹣lnx=ln ,亦即 ≥ ,
分别取 x=1,2,…,n得 ≥ ,
≥ , ≥ ,…, ≥ ,
将以上各式相乘,得: > 成立.
【解析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(2)求出h(x)的导数,通过讨论a的范围求出函数的单调区间,从而求出函数的极值即可;(3)令a=1,得到 ≥1﹣lnx=ln ,亦即 ≥ ,分别取 x=1,2,…,n,相乘即可.
【考点精析】利用基本求导法则和函数的极值与导数对题目进行判断即可得到答案,需要熟知若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.
【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生的课外体育锻炼平均每天运动的时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼 | [0,10) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) |
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均课外课外体育运动时间在[40,60)上的学生评价为“课外体育达标”.
(1)请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?
课外体育不达标 | 课外体育达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
参考公式: ,其中n=a+b+c+d.
参考数据:
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(2)将上述调查所得到的频率视为概率.现在从该校高三学生中,抽取3名学生,记被抽取的3名学生中的“课外体育达标”学生人数为X,若每次抽取的结果是相互独立的,求X的数学期望和方差.