题目内容

【题目】在△ABC中,角A,B,C的对边分别为a、b、c,且满足3asinC=4ccosA, =3.
(1)求△ABC的面积S;
(2)若c=1,求a的值.

【答案】
(1)解:∵3asinC=4ccosA,∴3sinAsinC=4sinCcosA,sinC≠0,

∴tanA= ,可得sinA= ,cosA=

=3,∴bccosA=3,∴bc=5.

∴S= bcsinA= =2.


(2)解:由(1)可得:b=5.

∴a2=1+52﹣2×5×1× =20,

解得a=2


【解析】(1)由3asinC=4ccosA,利用正弦定理可得3sinAsinC=4sinCcosA,sinC≠0,可得tanA,sinA,cosA.由 =3,可得bccosA=3,解得bc.即可得出S= bcsinA.(2)利用(1)及其余弦定理即可得出.
【考点精析】关于本题考查的正弦定理的定义,需要了解正弦定理:才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网