题目内容
15.若c=2,∠C=$\frac{π}{3}$且△ABC是锐角三角形,则△ABC周长的取值范围(2$\sqrt{3}$+2,6].分析 通过角的范围,利用正弦定理推出a+b的关系,利用两角和的正弦函数,化简函数的表达式,求出a+b的取值范围,从而可求周长的取值范围.
解答 解:由∠C=$\frac{π}{3}$且三角形是锐角三角形可得$\frac{π}{6}<A<\frac{π}{2}$,
由正弦定理得$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$,
∴a=$\frac{c}{sinC}$×sinA=$\frac{4}{\sqrt{3}}$sinA,
b=$\frac{4}{\sqrt{3}}$sinB=$\frac{4}{\sqrt{3}}$sin($\frac{2π}{3}$-A),
∴a+b=$\frac{4}{\sqrt{3}}$[sinA+sin($\frac{2π}{3}$-A)]=$\frac{4}{\sqrt{3}}$($\frac{3}{2}$sinA+$\frac{\sqrt{3}}{2}$cosA)=4sin(A+$\frac{π}{6}$),
∴$\frac{π}{3}$<A+$\frac{π}{6}$<$\frac{2π}{3}$,
∴$\frac{\sqrt{3}}{2}$<sin(A+$\frac{π}{6}$)≤1,即 2$\sqrt{3}$<a+b≤4
∴△ABC周长l=a+b+c∈(2$\sqrt{3}$+2,6].
故答案为:(2$\sqrt{3}$+2,6].
点评 本题考查两角和的正弦函数、正切函数以及正弦定理的应用,考查计算能力,属于基本知识的考查.
练习册系列答案
相关题目
5.△ABC的外接圆的圆心为O,半径为1,若$\overrightarrow{AB}$+$\overrightarrow{AC}$=2$\overrightarrow{AO}$,且|$\overrightarrow{OA}$|=|$\overrightarrow{AC}$|,则△ABC的面积为( )
A. | $\sqrt{3}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | 2$\sqrt{3}$ | D. | 1 |
6.若等差数列{an}中,a2+a8=10,则a3+a7=( )
A. | 11 | B. | 10 | C. | 8 | D. | 5 |
3.有一对年轻夫妇给他们12个月大的婴儿拼排3块分别写有“20”,“15”和“亳州”的字块,如果婴儿能够排成“2015亳州”或者“亳州2015”,则他们就给婴儿奖励,假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是( )
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
20.已知函数y=f(x+2)的图象关于直线x=-2对称,且当x∈(-∞,0)时,f(x)+xf′(x)>0成立.若a=(20.2)•f(20.2),b=(ln2)•f(ln2),c=(log24)•f(log24),则a,b,c的大小关系是( )
A. | a>b>c | B. | b>c>a | C. | c>b>a | D. | c>a>b |
7.f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是( )
A. | (-∞,-3)∪(0,3) | B. | (-∞,-3)∪(3,+∞) | C. | (-3,0)∪(3,+∞) | D. | (-3,0)∪(0,3) |