题目内容
20.已知函数y=f(x+2)的图象关于直线x=-2对称,且当x∈(-∞,0)时,f(x)+xf′(x)>0成立.若a=(20.2)•f(20.2),b=(ln2)•f(ln2),c=(log24)•f(log24),则a,b,c的大小关系是( )A. | a>b>c | B. | b>c>a | C. | c>b>a | D. | c>a>b |
分析 利用函数y=f(x+2)的图象关于直线x=-2对称,可得函数y=f(x)的图象关于y轴对称,是偶函数.令g(x)=xf(x),利用已知当x∈(-∞,0)时,g′(x)=f(x)+xf′(x)>0,可得函数g(x)在x∈(-∞,0)单调递增,进而得到函数g(x)在(0,+∞)上单调递增.再根据log24=2>20.2>1>ln2>0.即可得到a,b,c的大小.
解答 解:∵函数y=f(x+2)的图象关于直线x=-2对称,
∴函数y=f(x)的图象关于y轴对称,是偶函数.
令g(x)=xf(x),则g(x)为奇函数,
则当x∈(-∞,0)时,g′(x)=f(x)+xf′(x)>0,
∴函数g(x)在x∈(-∞,0)单调递增,
因此函数g(x)在(0,+∞)上单调递增.
∵log24=2>20.2>1>ln2>0.
∴c>a>b.
故选D.
点评 熟练掌握轴对称、奇偶函数的性质、利用导数研究函数的单调性、对数的运算性质等是解题的关键.
练习册系列答案
相关题目
11.若等比数列{an}满足log3a1+log3a2+…+log3a10=10,则a2a9+a4a7的值为( )
A. | 9 | B. | 18 | C. | 27 | D. | 2+log35 |
8.若函数f(x)=$\left\{\begin{array}{l}{\sqrt{2-{x}^{2}},-\sqrt{2}≤x≤1}\\{\frac{1}{x},1<x≤e}\end{array}\right.$,则${∫}_{-\sqrt{2}}^{e}$f(x)dx等于( )
A. | $\frac{3π+6}{4}$ | B. | $\frac{3π+4}{4}$ | C. | π+1 | D. | $\frac{3π+3}{2}$ |
10.偏差是指个别测定值与测定的平均值之差,在成绩统计中,我们把某个同学的某科考试成绩与该科班平均分的差叫某科偏差,在某次考试成绩统计中,某老师为了对学生数学偏差x(单位:分)与物理偏差y(单位:分)之间的关系进行分析,随机挑选了8位同学,得到他们的两科成绩偏差数据如下:
(Ⅰ)若x与y之间具有线性相关关系,求y关于x的线性回归方程;
(Ⅱ)若该次考试该班数学平均分为120分,物理平均分为91.5分,试由(1)的结论预测数学成绩为128分的同学的物理成绩.
参考数据:
$\sum_{i=1}^{8}$xiyi=20×6.5+15×3.5+13×3.5+3×1.5+2×0.5+(-5)×(-0.5)+(-10)×(-2.5)+(-18)×(-3.5)=324
$\sum_{i=1}^{8}$x${\;}_{i}^{2}$=202+152+132+32+22+(-5)2+(-10)2+(-18)2=1256.
学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学偏差x | 20 | 15 | 13 | 3 | 2 | -5 | -10 | -18 |
物理偏差y | 6.5 | 3.5 | 3.5 | 1.5 | 0.5 | -0.5 | -2.5 | -3.5 |
(Ⅱ)若该次考试该班数学平均分为120分,物理平均分为91.5分,试由(1)的结论预测数学成绩为128分的同学的物理成绩.
参考数据:
$\sum_{i=1}^{8}$xiyi=20×6.5+15×3.5+13×3.5+3×1.5+2×0.5+(-5)×(-0.5)+(-10)×(-2.5)+(-18)×(-3.5)=324
$\sum_{i=1}^{8}$x${\;}_{i}^{2}$=202+152+132+32+22+(-5)2+(-10)2+(-18)2=1256.