题目内容
【题目】为了调查观众对某热播电视剧的喜爱程度,某电视台在甲、乙两地各随机抽取了名观众作问卷调查,得分统计结果如图所示.
(1)计算甲、乙两地被抽取的观众问卷的平均分与方差.
(2)若从甲地被抽取的名观众中再邀请名进行深入调研,求这名观众中恰有人的问卷调查成绩在分以上的概率.
【答案】(1)答案见解析;(2).
【解析】分析:(1)根据茎叶图中给出的数据并结合平均数、方差的定义求解即可.(2)由题意列举出从8人中抽取2人的所有得分情况,然后根据古典概型求解.
详解:(1)依题意得,
,
; ,
.
(2)依题意得从8人中抽取2人,则2人的所有得分情况为:,,,,,,,,,,,,,,,,,,,,,,,,,,,,共种.
其中恰有人的成绩在分以上的情况为:,,,,,,,,,,,,共种,
由古典概型概率公式可得所求概率为.
【题目】某企业对现有设备进行了改造,为了了解设备改造后的效果,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测其质量指标值,若质量指标值在内,则该产品视为合格品,否则视为不合格品.图1是设备改造前的样本的频率分布直方图,表1是设备改造后的样本的频数分布表.
(1)完成列联表,并判断是否有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关:
设备改造前 | 设备改造后 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
(2)根据图1和表1提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;
(3)企业将不合格品全部销毁后,根据客户需求对合格品进行等级细分,质量指标值落在内的定为一等品,每件售价180元;质量指标值落在或内的定为二等品,每件售价150元;其他的合格品定为三等品,每件售价120元.根据频数分布表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有合格产品中抽到一件相应等级产品的概率.现有一名顾客随机购买两件产品,设其支付的费用为(单位:元),求的分布列和数学期望.
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |