题目内容
【题目】在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程与曲线的直角坐标方程;
(2)设为曲线上位于第一,二象限的两个动点,且,射线交曲线分别于,求面积的最小值,并求此时四边形的面积.
【答案】(1);(2)面积的最小值为;四边形的面积为
【解析】
(1)将曲线消去参数即可得到的普通方程,将,代入曲线的极坐标方程即可;
(2)由(1)得曲线的极坐标方程,设,,,
利用方程可得,再利用基本不等式得,即可得,根据题意知,进而可得四边形的面积.
(1)由曲线的参数方程为(为参数)消去参数得
曲线的极坐标方程为,即,
所以,曲线的直角坐标方程.
(2)依题意得的极坐标方程为
设,,,
则,,故
,当且仅当(即)时取“=”,
故,即面积的最小值为.
此时,
故所求四边形的面积为.
练习册系列答案
相关题目