题目内容
【题目】已知函数,函数().
(1)讨论的单调性;
(2)证明:当时,.
(3)证明:当时,.
【答案】(1)答案不唯一,具体见解析(2)证明见解析(3)证明见解析
【解析】
(1)求出的定义域,导函数,对参数、分类讨论得到答案.
(2)设函数,求导说明函数的单调性,求出函数的最大值,即可得证.
(3)由(1)可知,可得,即又即可得证.
(1)解:的定义域为,,
当,时,,则在上单调递增;
当,时,令,得,令,得,则在上单调递减,在上单调递增;
当,时,,则在上单调递减;
当,时,令,得,令,得,则在上单调递增,在上单调递减;
(2)证明:设函数,则.
因为,所以,,
则,从而在上单调递减,
所以,即.
(3)证明:当时,.
由(1)知,,所以,
即.
当时,,,
则,
即,
又,
所以,
即.
练习册系列答案
相关题目