题目内容
15.已知x>0,y>0,2x+y=1,若4x2+y2+$\sqrt{xy}$-m<0恒成立,则m的取值范围是$m>\frac{17}{16}$.分析 4x2+y2+$\sqrt{xy}$-m<0恒成立,即m>4x2+y2+$\sqrt{xy}$恒成立,求出4x2+y2+$\sqrt{xy}$的最大值,即可求得m的取值范围.
解答 解:4x2+y2+$\sqrt{xy}$-m<0恒成立,即m>4x2+y2+$\sqrt{xy}$恒成立,
∵x>0,y>0,2x+y=1,
∴1≥2$\sqrt{2xy}$,
∴0<$\sqrt{xy}$≤$\frac{\sqrt{2}}{4}$
∵4x2+y2+$\sqrt{xy}$=(2x+y)2-4xy+$\sqrt{xy}$=1-4xy+$\sqrt{xy}$=-4($\sqrt{xy}$-$\frac{1}{8}$)2+$\frac{17}{16}$,
∴4x2+y2+$\sqrt{xy}$的最大值为$\frac{17}{16}$,
∴$m>\frac{17}{16}$.
故答案为:$m>\frac{17}{16}$.
点评 本题考查不等式恒成立问题,考察基本不等式的运用,正确转化是关键.
练习册系列答案
相关题目
6.如图是一个几何体的三视图,则这个几何体的体积为( )
A. | 16+3π | B. | 32+6π | C. | 64+12π | D. | 64+6π |
10.已知向量$\overrightarrow a,\overrightarrow b$满足:$|\overrightarrow a|=13,|\overrightarrow b|=1,|\overrightarrow a-5\overrightarrow b|≤12$,则$\overrightarrow b$在$\overrightarrow a$上的投影长度的取值范围是( )
A. | $[0,\frac{1}{13}]$ | B. | $[0,\frac{5}{13}]$ | C. | $[\frac{1}{13},1]$ | D. | $[\frac{5}{13},1]$ |