题目内容
5.已知复数z=x+yi(x,y∈R),且有$\frac{x}{i-1}$=1+yi,$\overline z$是z的共轭复数,那么$\frac{1}{\overline{z}}$的虚部为( )A. | -$\frac{1}{5}$i | B. | $\frac{1}{5}$ | C. | -$\frac{1}{5}$ | D. | $\frac{1}{5}$i |
分析 利用复数代数形式的乘除运算化简,然后利用复数相等的条件求得x,y的值,得到$\overline{z}$,代入$\frac{1}{\overline{z}}$,再由复数代数形式的乘除运算化简得答案.
解答 解:由$\frac{x}{i-1}$=$\frac{x(-1-i)}{(-1+i)(-1-i)}=-\frac{x}{2}-\frac{x}{2}i$=1+yi,得
$\left\{\begin{array}{l}{-\frac{x}{2}=1}\\{y=-\frac{x}{2}}\end{array}\right.$,即x=-2,y=1.
∴$\overline{z}=-2-i$,则$\frac{1}{\overline{z}}=\frac{1}{-2-i}$=$\frac{-2+i}{(-2-i)(-2+i)}=-\frac{2}{5}+\frac{i}{5}$.
∴$\frac{1}{\overline{z}}$的虚部为$\frac{1}{5}$.
故选:B.
点评 本题考查了复数代数形式的乘除运算,考查了复数相等的条件,是基础题.
练习册系列答案
相关题目
15.在△ABC中,sin2A≥sin2B+sin2C-sinBsinC,则∠A的取值范围是( )
A. | (0,$\frac{π}{6}$] | B. | (0,$\frac{π}{3}$] | C. | [$\frac{π}{6}$,π) | D. | [$\frac{π}{3}$,π) |
16.根据如下样本数据得到的回归方程为$\stackrel{∧}{y}$=bx+a.若a=7.9,则x每增加1个单位,y就( )
x | 3 | 4 | 5 | 6 | 7 |
y | 4 | 2.5 | -0.5 | 0.5 | -2 |
A. | 增加1.4个单位 | B. | 减少1.4个单位 | C. | 增加1.2个单位 | D. | 减少1.2个单位. |
15.f(A∪B)=f(A)+f(B)=1,那么A和B事件的关系( )
A. | 对立不互斥 | B. | 互斥不对立 | C. | 互斥且对立 | D. | 以上都不对 |