题目内容
18.已知在数列{an}中,a1=1,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$.(1)求证:数列{$\frac{1}{{a}_{n}}$}是等差数列;
(2)记Sn=a1a2+a2a3+…+anan+1,试比较2Sn与1的大小.
分析 (1)由a1=1,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$.两边取倒数可得:$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}$=2,利用等差数列的定义即可证明;
(2)由(1)可得:$\frac{1}{{a}_{n}}$=2n-1,可得:anan+1=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,利用“裂项求和”与“放缩法”即可得出.
解答 (1)证明:∵a1=1,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$.
两边取倒数可得:$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}$=2,
∴数列{$\frac{1}{{a}_{n}}$}是等差数列,首项为1,公差为2;
(2)解:由(1)可得:$\frac{1}{{a}_{n}}$=1+2(n-1)=2n-1,
∴an=$\frac{1}{2n-1}$.
∴anan+1=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴Sn=a1a2+a2a3+…+anan+1=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+…+(\frac{1}{2n-1}-\frac{1}{2n+1})]$=$\frac{1}{2}(1-\frac{1}{2n+1})$,
∴2Sn=1-$\frac{1}{2n+1}$<1,
即2Sn<1.
点评 本题考查了等差数列的定义、“裂项求和”与“放缩法”,考查了推力能力与计算能力,属于中档题.