题目内容

已知各项均不相等的等差数列的前四项和成等比.
(1)求数列的通项公式;
(2)设,若恒成立,求实数的最大值.
(1);(2)

试题分析:数列问题要注意以下两点①等差(比)数列中各有5个基本量,建立方程组可“知三求二”;②数列的本质是定义域为正整数集或其有限子集的函数,数列的通项公式即为相应的解析式,因此在解决数列问题时,应注意用函数的思想求解.(1)由题知,,又,利用等差数列通项公式展开,得方程,联立求,进而求数列的通项公式;(2)求数列前项和,首先考虑其通项公式,利用裂项相消法,求得,再利用参变分离法,转化为求函数的最值问题处理.
试题解析:(1)设公差为d,由已知得:,联立解得(舍去)
,故       6分
(2)             8分
               10分

的最大值为12            14分项和;3、裂项相消法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网