ÌâÄ¿ÄÚÈÝ
3£®Ä³¹¤³§ÎªÁ˶ÔÐÂÑо¿µÄÒ»ÖÖ²úÆ·½øÐкÏÀí¶¨¼Û£¬½«¸Ã²úÆ·°´ÊÂÏÈÄⶨµÄ¼Û¸ñ½øÐÐÊÔÏú£¬µÃµ½ÈçÏÂÊý¾Ý£ºµ¥¼ÛxÔª | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
ÏúÊÛy¼þ | 90 | 84 | 83 | 80 | 75 | 68 |
£¨2£©Ô¤¼ÆÔÚ½ñºóµÄÏúÊÛÖУ¬ÏúÊÛÓëµ¥¼ÛÈÔÈ»·þ´Ó£¨1£©ÖеĹØϵ£¬ÇҸòúÆ·µÄ³É±¾ÊÇ4Ôª/¼þ£¬ÎªÊ¹¹¤³§»ñµÃ×î´óÀûÈ󣬸òúÆ·µÄµ¥¼Û¶¨Îª¶àÉÙÔª£¿
·ÖÎö £¨1£©¼ÆËãƽ¾ùÊý£¬ÀûÓÃ$\hat b$=-20£¬Çó³ö$\widehat{a}$£¬¼´¿ÉÇóµÃ»Ø¹éÖ±Ïß·½³Ì£»
£¨2£©É蹤³§»ñµÃµÄÀûÈóΪyÔª£¬ÀûÓÃÀûÈó=ÏúÊÛÊÕÈë-³É±¾£¬½¨Á¢º¯Êý£¬ÀûÓÃÅä·½·¨¿ÉÇ󹤳§»ñµÃµÄÀûÈó×î´ó£®
½â´ð ½â£º£¨1£©$\overline{x}=\frac{8+8.2+8.4+8.6+8.8+9}{6}=8.5$£¬
$\overline{y}$=$\frac{1}{6}£¨90+84+83+80+75+68£©=80$
¡ß$\hat b$=-20£¬$\widehat{a}$=$\overline{y}$-$\hat b$$\overline x$£¬
¡à$\widehat{a}$=80+20¡Á8.5=250
¡à»Ø¹éÖ±Ïß·½³Ì$\widehaty$=-20x+250£»
£¨2£©É蹤³§»ñµÃµÄÀûÈóΪyÔª£¬Ôòy=x£¨-20x+250£©-4£¨-20x+250£©=-20${£¨x-\frac{33}{4}£©}^{2}+361.25$
¡à¸Ã²úÆ·µÄµ¥¼ÛÓ¦¶¨Îª$\frac{33}{4}$Ôª£¬¹¤³§»ñµÃµÄÀûÈó×î´ó£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é»Ø¹é·ÖÎö£¬¿¼²é¶þ´Îº¯Êý£¬¿¼²éÔËËãÄÜÁ¦¡¢Ó¦ÓÃÒâʶ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
5£®ÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬ÔòË«Çú$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1½¥½üÏß·½³Ì£¨¡¡¡¡£©
A£® | x¡À2y=0 | B£® | 2x¡Ày=0 | C£® | x¡À4y=0 | D£® | x¡À2y=0 |
12£®ÒÑÖª0£¼a£¼1£¼b£¬ÔòÏÂÃæ²»µÈʽÖÐÒ»¶¨³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£® | logab+logba+2£¾0 | B£® | logab+logba+2£¼0 | C£® | logab+logba+2¡Ý0 | D£® | logab+logba+2¡Ü0 |
13£®Èô¼¯ºÏA={x|x2-2x+m=0}=∅£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£® | £¨-¡Þ£¬-1£© | B£® | £¨-¡Þ£¬1£© | C£® | £¨1£¬+¡Þ£© | D£® | [1£¬+¡Þ£© |