题目内容
【题目】已知函数,其中为常数.
(1)若不等式的解集是,求此时的解析式;
(2)在(1)的条件下,设函数,若在区间上是单调递增函数,求实数的取值范围;
(3)是否存在实数使得函数在上的最大值是?若存在,求出的值;若不存在,请说明理由.
【答案】(1)(2)(3)存在,或
【解析】
(1)根据一元二次不等式与一元二次方程的关系,利用韦达定理,即可求解;
(2)根据二次函数图像确定对称轴和区间的关系,即可求解;
(3)由二次函数图像,求出函数可能取到的最大值,建立方程,求出参数,回代验证;或由对称轴,分类讨论,确定二次函数图象开口方向,函数在上的单调性,求出最大值且等于4,建立方程,即可求得结论.
解:(1)由题意得:是的根
∵, 解得
∴
(2)由(1)可得 ,
其对称轴方程为
若在上为增函数,则,解得
综上可知,的取值范围为
(3)当时,
,函数在上的最大值是15,不满足条件
当时,假设存在满足条件的,
则的最大值只可能在对称轴处取得,
其中对称轴
① 若,则有 ,
的值不存在,
② 若,则,
解得,此时,对称轴,
则最大值应在处取得,与条件矛盾,舍去
③ 若,
则:,且,
化简得,
解得或 ,满足
综上可知,当或时,
函数在上的最大值是4.
(3)另解:当时,
,函数在上的最大值是15,不满足条件
所以,此时的对称轴为
若,,此时
在上最大值为,
解得,与假设矛盾,舍去;
若
①当,即,函数在为增,
在上最大值为
,解得,矛盾舍去
②当,即,矛盾舍…
③当.即,
在上最大值为,
则 ,化简得,
解得或 ,满足 …
综上可知,当或时,
函数在上的最大值是4
练习册系列答案
相关题目