题目内容
【题目】某种产品的质量以其指标值来衡量,其指标值越大表明质量越好,且指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的指标值,得到了下面的试验结果: A配方的频数分布表
指标值分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
频数 | 8 | 20 | 42 | 22 | 8 |
B配方的频数分布表
指标值分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
频数 | 4 | 12 | 42 | 32 | 10 |
(1)分别估计用A配方,B配方生产的产品的优质品率;
(2)已知用B配方生产的一件产品的利润y(单位:元)与其指标值t的关系式为y= ,估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述产品平均每件的利润.
【答案】
(1)解:由试验结果知,用A配方生产的产品中优质的频率为 =0.3
∴用A配方生产的产品的优质品率的估计值为0.3.
由试验结果知,用B配方生产的产品中优质品的频率为 =0.42
∴用B配方生产的产品的优质品率的估计值为0.42
(2)解:用B配方生产的100件产品中,其质量指标值落入区间
[90,94),[94,102),[102,110]的频率分别为0.04,0.54,0.42,
∴P(X=﹣2)=0.04,P(X=2)=0.54,P(X=4)=0.42,
即X的分布列为
X | ﹣2 | 2 | 4 |
P | 0.04 | 0.54 | 0.42 |
∴X的数学期望值EX=﹣2×0.04+2×0.54+4×0.42=2.68
【解析】(1)根据所给的样本容量和两种配方的优质的频数,两个求比值,得到用两种配方的产品的优质品率的估计值.(2)根据题意得到变量对应的数字,结合变量对应的事件和第一问的结果写出变量对应的概率,写出分布列和这组数据的期望值.