题目内容
【题目】已知函数y=x+有如下性质:如果常数t>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.
(1)已知(x)=,x∈[0,1]利用上述性质,求函数f(x)的值域;
(2)对于(1)中的函数f(x)和函数g(x)=-x+2a.若对任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的值.
【答案】(1)[-4,-3];(2).
【解析】
(1)f(x)(2x+1),利用换元法,结合基本不等式即可求解;
(2)任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求解g(x)的值域M和f(x)的值域N,可得NM,即可求解实数a的值.
(1)f(x)(2x+1),
令u=2x+1,因为x∈[0,1],所以u∈[1,3],
可得f(x)转化为h(u)=u,u∈[1,3],
由已知条件所给出的性质得,当u∈[1,2],时,h(u)递减;当u∈[2,3]时,h(u)递增.
所以h(2)≤h(u)≤h(1)=h(3)
得f(x)的值域是[﹣4,﹣3];
(2)函数g(x)=﹣x+2a.为减函数,故当x∈[0,1]时,g(x)的值域[﹣1+2a,2a],
对任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立f(x)的值域是g(x)的值域的子集,
即[﹣4,﹣3][﹣1+2a,2a],
则,
解得:a.
【题目】某种产品的质量以其指标值来衡量,其指标值越大表明质量越好,且指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的指标值,得到了下面的试验结果: A配方的频数分布表
指标值分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
频数 | 8 | 20 | 42 | 22 | 8 |
B配方的频数分布表
指标值分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
频数 | 4 | 12 | 42 | 32 | 10 |
(1)分别估计用A配方,B配方生产的产品的优质品率;
(2)已知用B配方生产的一件产品的利润y(单位:元)与其指标值t的关系式为y= ,估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述产品平均每件的利润.