题目内容
17.若a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=$\frac{3\sqrt{2}}{2}$,则$\frac{1}{1-{a}^{\frac{1}{4}}}$+$\frac{1}{1+{a}^{\frac{1}{4}}}$+$\frac{2}{1+{a}^{\frac{1}{2}}}$+$\frac{4}{1+a}$=( )A. | $\frac{32}{3}$ | B. | -$\frac{8}{3}$ | C. | $\frac{32}{3}$或-$\frac{8}{3}$ | D. | -$\frac{32}{3}$或$\frac{8}{3}$ |
分析 化简$\frac{1}{1-{a}^{\frac{1}{4}}}$+$\frac{1}{1+{a}^{\frac{1}{4}}}$=$\frac{2}{(1-{a}^{\frac{1}{4}})(1+{a}^{\frac{1}{4}})}$=$\frac{2}{1-{a}^{\frac{1}{2}}}$,从而可化得$\frac{1}{1-{a}^{\frac{1}{4}}}$+$\frac{1}{1+{a}^{\frac{1}{4}}}$+$\frac{2}{1+{a}^{\frac{1}{2}}}$+$\frac{4}{1+a}$=$\frac{8}{1-{a}^{2}}$,再由a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=$\frac{3\sqrt{2}}{2}$求得a=2或a=$\frac{1}{2}$,从而解得.
解答 解:$\frac{1}{1-{a}^{\frac{1}{4}}}$+$\frac{1}{1+{a}^{\frac{1}{4}}}$=$\frac{2}{(1-{a}^{\frac{1}{4}})(1+{a}^{\frac{1}{4}})}$=$\frac{2}{1-{a}^{\frac{1}{2}}}$,
$\frac{1}{1-{a}^{\frac{1}{4}}}$+$\frac{1}{1+{a}^{\frac{1}{4}}}$+$\frac{2}{1+{a}^{\frac{1}{2}}}$=$\frac{2}{1-{a}^{\frac{1}{2}}}$+$\frac{2}{1+{a}^{\frac{1}{2}}}$=$\frac{4}{1-a}$,
$\frac{4}{1-a}$+$\frac{4}{1+a}$=$\frac{8}{1-{a}^{2}}$,
∵a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=$\frac{3\sqrt{2}}{2}$,
∴a+a-1=$\frac{5}{2}$,
∴a=2或a=$\frac{1}{2}$,
①当a=2时,$\frac{8}{1-{a}^{2}}$=-$\frac{8}{3}$;
②当a=$\frac{1}{2}$时,$\frac{8}{1-{a}^{2}}$=$\frac{32}{3}$;
故选:C.
点评 本题考查了指数幂的化简与运用,同时考查了学生的化简能力.
A. | y=2-x(x<0) | B. | y=x2+2x+1 | C. | y=$\sqrt{{x}^{2}-4x+1}$ | D. | $\frac{1}{\sqrt{x}}$ |