题目内容
19.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题,其中正确命题的个数为( )①若m∥l,且m⊥α,则l⊥α;
②若m∥l,且m∥α,则l∥α;
③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;
④若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 ①根据两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面,判断①;
②根据直线与平面平行的判定定理,得出②错误;
③根据空间中的线面平行关系,判断③错误;
④根据空间中的线面平行关系,得出④正确.
解答 解:对于①,当m∥l,m⊥α时,l⊥α,∴①正确;
对于②,当m∥l,m∥α时,l∥α,或l?α,∴②错误;
对于③,当α∩β=l,β∩γ=m,γ∩α=n时,l∥m∥n,或l、m、n交于一点,∴③错误;
对于④,当α∩β=m,β∩γ=l,γ∩α=n,且n∥β时,l∥m,∴④正确.
综上,正确的命题为①④.
故选:B.
点评 本题考查了空间中的平行与垂直关系的应用问题,也考查了数学符号语言的应用问题,是基础性题目.
练习册系列答案
相关题目
9.已知函数f(x)=xlnx,g(x)=ax3-$\frac{1}{2}$x-$\frac{2}{3e}$,记函数f(x)与g(x)的交点坐标为(x0,f(x0)),若两函数的图象在交点(x0,f(x0))处存在公切线,则实数a的值为( )
A. | $\frac{2}{3e}$ | B. | $\frac{{e}^{2}}{6}$ | C. | $\frac{{e}^{2}}{2}$ | D. | $\frac{3e}{2}$ |
10.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5的数据如表:
(1)根据表数据,请在下列坐标系中画出散点图;
(2)根据上表数据,用最小二乘法求出y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$;
(3)若周六同一时间段车流量是25万辆,试根据(2)求出的线性回归方程预测,此时PM2.5的浓度为多少(保留整数)?
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量x(万辆) | 50 | 51 | 54 | 57 | 58 |
PM2.5的浓度y(微克/立方米) | 69 | 70 | 74 | 78 | 79 |
(2)根据上表数据,用最小二乘法求出y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$;
(3)若周六同一时间段车流量是25万辆,试根据(2)求出的线性回归方程预测,此时PM2.5的浓度为多少(保留整数)?
14.如图所示,△PAB所在平面α和四边形ABCD所在的平面β互相垂直,且AD⊥α,BC⊥α,AD=4,BC=8,AB=6,若tan∠ADP-2tan∠BCP=1,则动点P在平面α内的轨迹是( )
A. | 线段 | B. | 椭圆的一部分 | C. | 抛物线 | D. | 双曲线的一部分 |
4.“x2-4x-5=0”是“x=5”的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |