题目内容
7.如图为一个空间几何体的三视图,其主视图与左视图是边长为2的正三角形、俯视图轮廓是正方形,则该几何体的侧面积为8.分析 首先根据三视图转换成立体图形,进一步利用几何体的体积公式求出结果.
解答 8;解:根据三视图得知:该几何体是以底面边长为2,高为$\sqrt{3}$的正四棱锥.
所以:正四棱锥的侧面的高为:$h=\sqrt{1+3}=2$,
则正四棱锥的侧面积为:S=$4•\frac{1}{2}•2•2=8$.
故答案为:8
点评 本题考查的知识要点:三视图和立体图形之间的转换,几何体的体积公式的应用,主要考查学生的空间想象能力和应用能力.
练习册系列答案
相关题目
2.定义域为R的函数f(x)满足f(x+2)=2f(x)-2,当x∈(0,2]时,f(x)=$\left\{\begin{array}{l}{x^2}-x\;\;,\;\;x∈({0,1})\\ \frac{1}{x}\;,\;\;\;\;x∈[{1,2}]\end{array}$,若x∈(0,4]时,t2-$\frac{7t}{2}$≤f(x)≤3-t恒成立,则实数t的取值范围是( )
A. | [2,+∞) | B. | $(1,\frac{5}{2})$ | C. | $(2,\frac{5}{2})$ | D. | [1,2] |
12.设全集U=R,已知A=$\left\{{x\left|{\frac{2x+3}{x-2}>0}\right.}\right\}$,B={x||x-1|<2},则(∁UA)∩B=( )
A. | $({-\frac{3}{2},1})$ | B. | (-1,2] | C. | (2,3] | D. | [2,3) |
16.函数f(x)=cos(2x-$\frac{π}{4}$)在区间[0,$\frac{π}{2}$]上的最小值为( )
A. | -1 | B. | -$\frac{\sqrt{2}}{2}$ | C. | 0 | D. | $\frac{\sqrt{2}}{2}$ |