题目内容
【题目】设数列满足;
(1)若,求证:数列为等比数列;
(2)在(1)的条件下,对于正整数,若这三项经适当排序后能构成等差数列,求符合条件的数组;
(3)若是的前项和,求不超过的最大整数.
【答案】(1)见解析;(2);(3)2016
【解析】
(1)结合的表达式,对进行恒等变形,这样就能证明出数列为等比数列;
(2)根据(1)写出数列的通项公式,根据等差中项的概念分类讨论最后得到答案;
(3)根据已知求出的表达式,求出的表达式,利用裂项相消法求出不超过的最大整数.
(1)由,∴,
即,又,∴数列是以1 为首项,2为公比的等比数列;
(2)由(1)知这三项经适当排序后能构成等差数列;
①若,则,∴,左边为偶数,右边为奇数,∴等式不成立;
③若,同理也不成立;综合①②③得,;
(3)由,∴,∴;
由
;
∴.
∴不超过的最大整数为2016
【题目】某地区2020年清明节前后3天每天下雨的概率为60%,通过模拟实验的方法来计算该地区这3天中恰好有2天下雨的概率:用随机数(,且)表示是否下雨:当时表示该地区下雨,当时,表示该地区不下雨,从随机数表中随机取得20组数如下
332 714 740 945 593 468 491 272 073 445
992 772 951 431 169 332 435 027 898 719
(1)求出的值,并根据上述数表求出该地区清明节前后3天中恰好有2天下雨的概率;
(2)从2011年开始到2019年该地区清明节当天降雨量(单位:)如下表:(其中降雨量为0表示没有下雨).
时间 | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 | 2019年 |
年份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
降雨量 | 29 | 28 | 26 | 27 | 25 | 23 | 24 | 22 | 21 |
经研究表明:从2011年开始至2020年, 该地区清明节有降雨的年份的降雨量与年份成线性回归,求回归直线,并计算如果该地区2020年()清明节有降雨的话,降雨量为多少?(精确到0.01)
参考公式:.
参考数据:,,
,.
【题目】某公司为了预测下月产品销售情况,找出了近7个月的产品销售量(单位:万件)的统计表:
月份代码 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售量(万件) |
但其中数据污损不清,经查证,,.
(1)请用相关系数说明销售量与月份代码有很强的线性相关关系;
(2)求关于的回归方程(系数精确到0.01);
(3)公司经营期间的广告宣传费(单位:万元)(),每件产品的销售价为10元,预测第8个月的毛利润能否突破15万元,请说明理由.(毛利润等于销售金额减去广告宣传费)
参考公式及数据:,相关系数,当时认为两个变量有很强的线性相关关系,回归方程中斜率和截距的最小二乘估计公式分别为,.