题目内容
(2011•浙江)已知抛物线C1:x2=y,圆C2:x2+(y﹣4)2=1的圆心为点M
(1)求点M到抛物线C1的准线的距离;
(2)已知点P是抛物线C1上一点(异于原点),过点P作圆C2的两条切线,交抛物线C1于A,B两点,若过M,P两点的直线l垂直于AB,求直线l的方程.
(1)求点M到抛物线C1的准线的距离;
(2)已知点P是抛物线C1上一点(异于原点),过点P作圆C2的两条切线,交抛物线C1于A,B两点,若过M,P两点的直线l垂直于AB,求直线l的方程.
(1) (2)
(1)由题意画出简图为:
由于抛物线C1:x2=y准线方程为:y=﹣,圆C2:x2+(y﹣4)2=1的圆心M(0,4),
利用点到直线的距离公式可以得到距离d==.
(2)设点P(x0,x02),A(x1,x12),B(x2,x22);
由题意得:x0≠0,x2≠±1,x1≠x2,
设过点P的圆c2的切线方程为:y﹣x02=k(x﹣x0)即y=kx﹣kx0+x02①
则,即(x02﹣1)k2+2x0(4﹣x02)k+(x02﹣4)2﹣1=0
设PA,PB的斜率为k1,k2(k1≠k2),则k1,k2应该为上述方程的两个根,
∴,;
代入①得:x2﹣kx+kx0﹣x02="0" 则x1,x2应为此方程的两个根,
故x1=k1﹣x0,x2=k2﹣x0
∴kAB=x1+x2=k1+k2﹣2x0=
由于MP⊥AB,∴kAB•KMP=﹣1⇒
故P∴.
由于抛物线C1:x2=y准线方程为:y=﹣,圆C2:x2+(y﹣4)2=1的圆心M(0,4),
利用点到直线的距离公式可以得到距离d==.
(2)设点P(x0,x02),A(x1,x12),B(x2,x22);
由题意得:x0≠0,x2≠±1,x1≠x2,
设过点P的圆c2的切线方程为:y﹣x02=k(x﹣x0)即y=kx﹣kx0+x02①
则,即(x02﹣1)k2+2x0(4﹣x02)k+(x02﹣4)2﹣1=0
设PA,PB的斜率为k1,k2(k1≠k2),则k1,k2应该为上述方程的两个根,
∴,;
代入①得:x2﹣kx+kx0﹣x02="0" 则x1,x2应为此方程的两个根,
故x1=k1﹣x0,x2=k2﹣x0
∴kAB=x1+x2=k1+k2﹣2x0=
由于MP⊥AB,∴kAB•KMP=﹣1⇒
故P∴.
练习册系列答案
相关题目