题目内容
【题目】空气质量问题,全民关注,有需求就有研究,某科研团队根据工地常用高压水枪除尘原理,制造了雾霾神器﹣﹣﹣雾炮,虽然雾炮不能彻底解决问题,但是能在一定程度上起到防霾、降尘的作用,经过测试得到雾炮降尘率的频率分布直方图:
若降尘率达到18%以上,则认定雾炮除尘有效.
(1)根据以上数据估计雾炮除尘有效的概率;
(2)现把A市规划成三个区域,每个区域投放3台雾炮进行除尘(雾炮之间工作互不影响),若在一个区域内的3台雾炮降尘率都低于18%,则需对该区域后期追加投入20万元继续进行治理,求后期投入费用的分布列和期望.
【答案】
(1)
解:估计雾炮除尘有效的概率P= 5×0.05+5×0.04+5×0.03+5×0.01=
(2)
解:由(1)可得:在一个区域内的3台雾炮降尘率都低于18%,则需对该区域后期追加投入20万元继续进行治理,
因此在一个区域内需对该区域后期追加投入20万元继续进行治理的概率P= = .
∴后期投入区域X~B .后期投入费用ξ=20X(万元).
P(ξ=20k)=P(X=k)= .
ξ的分布列为:
ξ | 0 | 20 | 40 | 60 |
P |
Eξ=0+ +40× +60× =7.5(万元)
【解析】(1)估计雾炮除尘有效的概率P= 5×0.05+5×0.04+5×0.03+5×0.01.(2)由(1)可得:在一个区域内的3台雾炮降尘率都低于18%,则需对该区域后期追加投入20万元继续进行治理,
因此在一个区域内需对该区域后期追加投入20万元继续进行治理的概率P= = .后期投入区域X~B .后期投入费用ξ=20X(万元).利用P(ξ=20k)=P(X=k)= 即可得出.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.
【题目】设y=f(t)是某港口水的深度y(米)关于时间t(小时)的函数,其中.下表是该港口某一天从0时至24时记录的时间t与水深y的关系:
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y | 12 | 15.1 | 12.1 | 9.1 | 12 | 14.9 | 11.9 | 9 | 12.1 |
经长期观察,函数y=f(t)的图象可以近似地看成函数的图象.⑴求的解析式;⑵设水深不小于米时,轮船才能进出港口。某轮船在一昼夜内要进港口靠岸办事,然后再出港。问该轮船最多能在港口停靠多长时间?