题目内容
【题目】当时,函数的值域是_________.
【答案】[-1,2]
【解析】:f(x)=sinx+cosx=2(sinx+cosx)=2sin(x+),
∵﹣≤x≤,
∴﹣≤x+≤,
∴﹣≤sin(x+)≤1,
∴函数f(x)的值域为[﹣1,2],
故答案为:[﹣1,2].
【题型】填空题
【结束】
15
【题目】若点O在内,且满足,设为的面积, 为的面积,则=________.
【答案】
【解析】由,可得:
延长OA,OB,OC,使OD=2OA,OE=4OB,OF=3OC,
如图所示:
∵2+3+4=,
∴,
即O是△DEF的重心,
故△DOE,△EOF,△DOF的面积相等,
不妨令它们的面积均为1,
则△AOB的面积为,△BOC的面积为,△AOC的面积为,
故三角形△AOB,△BOC,△AOC的面积之比依次为: : : =3:2:4,
.
故答案为: .
练习册系列答案
相关题目