题目内容
1.焦点在y轴上的双曲线的一条渐近方程为y=$\frac{\sqrt{3}}{3}$x,则双曲线的离心率为( )A. | 2 | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{4\sqrt{3}}{3}$ |
分析 由题意$\frac{a}{b}$=$\frac{\sqrt{3}}{3}$,整理得:b2=3a2,利用离心率的概念及计算公式即可求得答案.
解答 解:因为焦点在y轴上的双曲线的一条渐近方程为y=$\frac{\sqrt{3}}{3}$x
所以$\frac{a}{b}$=$\frac{\sqrt{3}}{3}$,整理得:b2=3a2,
所以c2=4a2,
所以e2=$\frac{{c}^{2}}{{a}^{2}}$=4,
所以e=2,
故选:A.
点评 本题考查双曲线的几何性质,求得b2=3a2是关键,考查离心率的求法,是基本知识的考查.
练习册系列答案
相关题目
12.将正整数按如图排列,其中处于从左到右第m列从下到上第n行的数
记为A(m,n),如A(3,1)=4,A(4,2)=12,则A(10,3)
=69;A(1,n)=$\frac{n(n+1)}{2}$.
记为A(m,n),如A(3,1)=4,A(4,2)=12,则A(10,3)
=69;A(1,n)=$\frac{n(n+1)}{2}$.
16.设F1、F2分别为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点,双曲线上存在一点P,使得|PF1|+|PF2|=3b,|PF1|•|PF2|=$\frac{9}{4}$ab,则该双曲线的渐近线方程为( )
A. | y=±$\frac{4}{3}$x | B. | y=±$\frac{3}{4}$x | C. | y=±$\frac{5}{3}$x | D. | y=±$\frac{3}{5}$x |
6.已知点P为椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上一点,点F1,F2分别为椭圆的左、右焦点,点I为△PF1F2的内心,若△PIF1和△PIF2的面积和为1,则△IF1F2的面积为( )
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
11.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如表:
为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为30;20.
年产量/亩 | 年种植成本/亩 | 每吨售价 | |
黄瓜 | 4吨 | 1.2万元 | 0.55万元 |
韭菜 | 6吨 | 0.9万元 | 0.3万元 |