ÌâÄ¿ÄÚÈÝ
5£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{e}^{x}-2\\£¨1-2a£©x+2a\end{array}\right.\begin{array}{c}x¡Ü0\\£¬x£¾0\end{array}\right.$¶ÔÈÎÒâx1¡Ùx2£¬¶¼ÓÐ$\frac{{f£¨{x_1}£©-f£¨{x_2}£©}}{{{x_1}-{x_2}}}$£¾0³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£®[$-\frac{1}{2}£¬\frac{1}{2}$£©£®·ÖÎö ¸ù¾ÝÒÑÖªÌõ¼þ±ãÖªº¯Êýf£¨x£©ÔÚRÉÏΪÔöº¯Êý£¬´Ó¶øx¡Ü0£¬ºÍx£¾0ʱ£¬f£¨x£©¶¼Ó¦ÎªÔöº¯Êý£¬´Ó¶øµÃµ½$a£¼\frac{1}{2}$£¬²¢ÇÒÓÐe0-2a¡Ü£¨1-2a£©•0+2a£¬´Ó¶ø1-2a¡Ü2a£¬½â¸Ã²»µÈʽÓëÇ°ÃæaµÄ·¶Î§Çó½»¼¯¼´¿ÉµÃ³öʵÊýaµÄÈ¡Öµ·¶Î§£®
½â´ð ½â£ºÓÉÌâÒâÖªº¯Êýf£¨x£©ÔÚRÉϵ¥µ÷µÝÔö£»
¡àf£¨x£©µÄÁ½¶Îº¯ÊýÔÚ¸÷×ÔÇø¼äÉϵ¥µ÷µÝÔö£»
¡à1-2a£¾0£¬¼´$a£¼\frac{1}{2}$£»
ÓÖe0-2¡Ü£¨1-2a£©•0+2a£»
¡à-1¡Ü2a£»
¡à$a¡Ý-\frac{1}{2}$£»
¡àʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ[$-\frac{1}{2}£¬\frac{1}{2}$£©£®
¹Ê´ð°¸Îª£º[$-\frac{1}{2}£¬\frac{1}{2}$£©£®
µãÆÀ ¿¼²éÔöº¯ÊýµÄ¶¨Ò壬·Ö¶Îº¯ÊýµÄµ¥µ÷ÐÔµÄÅжϷ½·¨£¬ÒÔ¼°Ö¸Êýº¯Êý¡¢Ò»´Îº¯ÊýµÄµ¥µ÷ÐÔ£¬ÒªÕÆÎշֶκ¯ÊýΪµ¥µ÷º¯ÊýʱӦÂú×ãµÄÌõ¼þ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
13£®ÈçͼµÄ¿òͼ±íʾµÄËã·¨µÄ¹¦ÄÜÊÇ£¨¡¡¡¡£©
A£® | ÇóºÍS=2+22+¡+264 | B£® | ÇóºÍS=1+2+22+¡+263 | ||
C£® | ÇóºÍS=1+2+22+¡+264 | D£® | ÒÔÉϾù²»¶Ô |
10£®ÃüÌâ¡°?x0¡ÊR£¬2${\;}^{{x}_{0}}$¡Ý1¡±µÄ·ñ¶¨ÊÇ£¨¡¡¡¡£©
A£® | ?x0¡ÊR£¬2${\;}^{{x}_{0}}$£¼1 | B£® | ?x0¡ÊR£¬2${\;}^{{x}_{0}}$¡Ü1 | C£® | ?x¡ÊR£¬2x¡Ý1 | D£® | ?x¡ÊR£¬x£¼1 |
17£®º¯Êýf£¨x£©=2x-sinxÔÚ£¨-¡Þ£¬+¡Þ£©ÉÏ£¨¡¡¡¡£©
A£® | ÊÇÔöº¯Êý | B£® | ÊǼõº¯Êý | C£® | ÓÐ×î´óÖµ | D£® | ÓÐ×îСֵ |
15£®ÒÑÖªµãA£¨a£¬a£©£¨a¡Ù0£©£¬B£¨1£¬0£©£¬OΪ×ø±êԵ㣮ÈôµãCÔÚÖ±ÏßOAÉÏ£¬ÇÒBCÓëOA´¹Ö±£¬ÔòµãCµÄ×ø±êÊÇ£¨¡¡¡¡£©
A£® | $£¨\frac{1}{2}£¬\;-\frac{1}{2}£©$ | B£® | $£¨\frac{a}{2}£¬\;-\frac{a}{2}£©$ | C£® | $£¨\frac{a}{2}£¬\;\frac{a}{2}£©$ | D£® | $£¨\frac{1}{2}£¬\;\frac{1}{2}£©$ |