题目内容
5.若不等式组$\left\{\begin{array}{l}x-y≤0\\ x-2y+2≥0\\ x≥m\end{array}\right.$表示的平面区域是面积为$\frac{16}{9}$的三角形,则m的值为( )A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $-\frac{2}{3}$ | D. | $\frac{5}{6}$ |
分析 作出不等式组对应的平面区域,利用三角形的面积,即可得到结论.
解答 解:作出不等式组对应的平面区域如图,
若对应的区域为三角形,则m<2,
由$\left\{\begin{array}{l}{x=m}\\{x-y=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=m}\\{y=m}\end{array}\right.$,即C(m,m),
由$\left\{\begin{array}{l}{x=m}\\{x-2y+2=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=m}\\{y=\frac{m+2}{2}}\end{array}\right.$,即B(m,$\frac{m+2}{2}$),
由$\left\{\begin{array}{l}{x-y=0}\\{x-2y+2=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即A(2,2),
则三角形ABC的面积S=$\frac{1}{2}$×($\frac{m+2}{2}$-m)×(2-m)=$\frac{16}{9}$,
即(2-m)2=$\frac{64}{9}$,
解得2-m=$\frac{8}{3}$,或2-m=-$\frac{8}{3}$,
即m=$-\frac{2}{3}$或m=$\frac{14}{3}$(舍),
故m=$-\frac{2}{3}$;
故选:C
点评 本题主要考查线性规划的应用,利用数形结合作出对应的图象,利用三角形的面积公式是解决本题的关键.
练习册系列答案
相关题目
16.函数y=cos(sinx)的图象大致是( )
A. | B. | C. | D. |
13.函数y=ax(a>0,a≠1)与y=xb的图象如图,则下列不等式一定成立的是( )
A. | ba>0 | B. | a+b>0 | C. | ab>1 | D. | loga2>b |
14.若复数z满足z-|z|=3-i,则z的虚部为( )
A. | 1 | B. | -1 | C. | i | D. | -i |
15.阅读如图的程序框图,当该程序运行后输出的x值是( )
A. | 2 | B. | -5 | C. | -$\frac{1}{3}$ | D. | 5 |