题目内容
(本小题满分14分)
已知:数列{
}的前n项和为
,满足
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951300571.gif)
(Ⅰ)证明数列{
}是等比数列.并求数列{
}的通项公式
=?
(Ⅱ)若数列{
}满足
=log2(
),而
为数列
的前n项和,求
=?
已知:数列{
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951238212.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951253220.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951253220.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951300571.gif)
(Ⅰ)证明数列{
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951316367.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951238212.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951238212.gif)
(Ⅱ)若数列{
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951378215.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951378215.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951316367.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951441211.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951472494.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951441211.gif)
(Ⅰ)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951612561.gif)
(Ⅱ)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951628564.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951612561.gif)
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951628564.gif)
解:(Ⅰ)当
,
,①
则当n≥2,
,
. ②
①-②,得
,
即
,………………………2分
∴
∴
………………………4分
当n="1" 时,
,则
,
∴ {
}是以
为首项,以2为公比的等比数列. ………………5分
∴
, ∴
,…………6分
(Ⅱ)由
……………8分
则
③ ……………………9分
, ④ ……………………10分
③-④,得
………………………11分
=
………………………12分
=
=
………………………13分
故
………………………14分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951659481.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951675488.gif)
则当n≥2,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951659481.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951737555.gif)
①-②,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951846495.gif)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951877448.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951893552.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951924473.gif)
当n="1" 时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951940419.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951971275.gif)
∴ {
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161952002371.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161952018278.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161952033472.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951612561.gif)
(Ⅱ)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231619521111192.gif)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161952127696.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161952143753.gif)
③-④,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161952174839.gif)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161952189720.gif)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161952221574.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161952236436.gif)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161951628564.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目