题目内容
【题目】已知如图:平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.
(1)求证:GH∥平面CDE;
(2)若CD=2,DB=4 ,求四棱锥F﹣ABCD的体积.
【答案】
(1)证明:∵EF∥AD,AD∥BC,∴EF∥BC且EF=AD=BC
∴四边形EFBC是平行四边形,∴H为FC的中点
又∵G是FD的中点
∴HG∥CD
∵HG平面CDE,CD平面CDE
∴GH∥平面CDE
(2)解:∵平面ADEF⊥平面ABCD,交线为AD
且FA⊥AD,∴FA⊥平面ABCD.
∵BC=6,∴FA=6
又∵CD=2,DB=4 ,CD2+DB2=BC2
∴BD⊥CD
∴SABCD=CD×BD=8
∴VF﹣ABCD= ×SABCD×FA= × ×6=16
【解析】(1)证明GH∥平面CDE,利用线面平行的判定定理,只需证明HG∥CD;(2)证明FA⊥平面ABCD,求出SABCD,即可求得四棱锥F﹣ABCD的体积.
【考点精析】解答此题的关键在于理解直线与平面平行的判定的相关知识,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.
练习册系列答案
相关题目