题目内容
【题目】某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为k(k为正整数).
(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;
(2)假设这三种部件的生产同时开工,试确定正整数k的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.
【答案】
【解析】(1)设完成A,B,C三种部件的生产任务需要的时间(单位:天)分别为
由题设有
其中均为1到200之间的正整数.(3分)
(2)完成订单任务的时间为
其定义域为
易知,为减函数,为增函数.
注意到于是
①当时, 此时,
由函数的单调性知,当时取得最小值,解得.
由于.
故当时完成订单任务的时间最短,且最短时间为.(6分)
②当时, 由于为正整数,故,
此时.
记,易知为增函数,则
.
由函数的单调性知,当时取得最小值,解得.由于
此时完成订单任务的最短时间大于.(9分)
③当时, 由于为正整数,故,
此时
由函数的单调性知,当时取得最小值,解得.
类似①的讨论,此时完成订单任务的最短时间为,大于.
综上所述,当时,完成订单任务的时间最短,此时,生产A,B,C三种部件的人数分别为44,88,68.
【题目】东亚运动会将于2013年10月6日在天津举行.为了搞好接待工作,组委会打算学习北京奥运会招募大量志愿者的经验,在某学院招募了16名男志愿者和14名女志愿者,调查发现,男女志愿者中分别有10人和6人喜爱运动,其余人不喜欢运动.
(1)根据以上数据完成以下2×2列联表:
喜爱运动 | 不喜爱运动 | 总计 | |
男 | 10 | 16 | |
女 | 6 | 14 | |
总计 | 30 |
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关?
(3)如果从喜欢运动的女志愿者中(其中恰有4人会外语),抽取2名负责翻译工作,那么抽出的志愿者中至少有1人能胜任翻译工作的概率是多少?
参考公式:K2=,其中
n=a+b+c+d.
参考数据:
P(K2≥k) | 0.40 | 0.25 | 0.10 | 0.010 |
k | 0.708 | 1.323 | 2.706 | 6.635 |
【题目】某公司生产的某种时令商品每件成本为元,经过市场调研发现,这种商品在未来天内的日销售量(件)与时间(天)的关系如下表所示.
时间/天 | 1 | 3 | 6 | 10 | 36 | …… |
日销售量 /件 | 94 | 90 | 84 | 76 | 24 | …… |
未来40天内,前20天每天的价格(元/件)与时间(天)的函数关系式为 ,且为整数),后20天每天的价格(元/件)与时间(天)的函数关系式为,且为整数).
(Ⅰ)认真分析表格中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据(件)与 (天)的关系式;
(Ⅱ)试预测未来 40 天中哪一天的日销售利润最大,最大利润是多少?
(Ⅲ)在实际销售的前 20 天中,该公司决定每销售 1 件商品就捐赠元利润给希望工程. 公司通过销售记录发现,前 20 天中,每天扣除捐赠后的日销售利润随时间(天)的增大而增大,求的取值范围.