题目内容
4.用二项式定理证明:32n-8n-1能被64整除(n∈N*).分析 由32n-8n-1=(8+1)n-8n-1,利用二项式定理展开化简为64( ${C}_{n}^{0}$•8n-2+${C}_{n}^{1}$•8n-3+${C}_{n}^{2}$•8n-4+…+${C}_{n}^{n-2}$),从而证得结论.
解答 解:32n-8n-1=(8+1)n-8n-1=${C}_{n}^{0}$•8n+${C}_{n}^{1}$•8n-1+${C}_{n}^{2}$•8n-2+…+${C}_{n}^{n-1}$•8+${C}_{n}^{n}$-8n-1
=${C}_{n}^{0}$•8n+${C}_{n}^{1}$•8n-1+${C}_{n}^{2}$•8n-2+…+${C}_{n}^{n-2}$•82=64( ${C}_{n}^{0}$•8n-2+${C}_{n}^{1}$•8n-3+${C}_{n}^{2}$•8n-4+…+${C}_{n}^{n-2}$).
再根据 ${C}_{n}^{0}$•8n-2+${C}_{n}^{1}$•8n-3+${C}_{n}^{2}$•8n-4+…+${C}_{n}^{n-2}$为正整数,
可得32n-8n-1能被64整除.
点评 本题考查二项式定理的应用:处理整除问题,利用函数的单调性证明不等式,体现了转化的数学思想,属于基础题.
练习册系列答案
相关题目
18.在△ABC中,已知a4+b4+c4=2c2(a2+b2),则∠C=( )
A. | 30° | B. | 60° | C. | 45°或135° | D. | 120° |