题目内容

【题目】设f(x)是定义在R上的增函数,且对于任意的x都有f(1﹣x)+f(1+x)=0恒成立.如果实数m、n满足不等式组 , 那么m2+n2的取值范围是(  )
A.(3,7)
B.(9,25)
C.(13,49)
D.(9,49)

【答案】C
【解析】解:∵对于任意的x都有f(1﹣x)+f(1+x)=0恒成立
∴f(1﹣x)=﹣f(1+x)
∵f(m2﹣6m+23)+f(n2﹣8n)<0,
∴f(m2﹣6m+23)<﹣f[(1+(n2﹣8n﹣1)],
∴f(m2﹣6m+23)<f[(1﹣(n2﹣8n﹣1)]=f(2﹣n2+8n)
∵f(x)是定义在R上的增函数,
∴m2﹣6m+23<2﹣n2+8n
∴(m﹣3)2+(n﹣4)2<4
∵(m﹣3)2+(n﹣4)2=4的圆心坐标为:(3,4),半径为2
∴(m﹣3)2+(n﹣4)2=4(m>3)内的点到原点距离的取值范围为( , 5+2),即( , 7)
∵m2+n2 表示(m﹣3)2+(n﹣4)2=4内的点到原点距离的平方
∴m2+n2 的取值范围是(13,49).
故选C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网