题目内容
【题目】如图,平面四边形中,,是上的一点,是的中点,以为折痕把折起,使点到达点的位置,且.
(1)证明:平面平面;
(2)求直线与平面所成角的正弦值.
【答案】(1)见解析;(2)
【解析】
(1)要证平面平面,只需证平面,而,所以只需证,而由已知的数据可证得为等边三角形,又由于是的中点,所以,从而可证得结论;
(2)由于在中,,而平面平面,所以点在平面的投影恰好为的中点,所以如图建立空间直角坐标系,利用空间向量求解.
(1)由,所以平面四边形为直角梯形,设,因为.
所以在中,,则,又,所以,由,
所以为等边三角形,
又是的中点,所以,又平面,
则有平面,
而平面,故平面平面.
(2)解法一:在中,,取中点,所以,
由(1)可知平面平面,平面平面,
所以平面,
以为坐标原点,方向为轴方向,
建立如图所示的空间直角坐标系,
则,,
设平面的法向量,由得取,则
设直线与平面所成角大小为,
则,
故直线与平面所成角的正弦值为.
解法二:在中,,取中点,所以,由(1)可知平面平面,平面平面,
所以平面,
过作于,连,则由平面平面,所以,又,则平面,又平面所以,在中,,所以,设到平面的距离为,由,即,即,
可得,
设直线与平面所成角大小为,则.
故直线与平面所成角的正弦值为.
练习册系列答案
相关题目