题目内容
【题目】关于三角形满足的条件,下列判断正确的是( )
A.a=7,b=14,A=30°,有两解
B.a=30,b=25,A=150°,有一解
C.a=6,b=9,A=45°,有两解
D.b=9,c=10,B=60°,无解
【答案】B
【解析】解:对于A,若△ABC中,a=7,b=14,A=30°,
则sinB= =1,可得B=90°,因此三角形有一解,得A不正确;
对于B,若△ABC中,a=30,b=25,A=150°,
则sinB= = ,而B为锐角,可得角B只有一个解,
因此三角形只有一解,得B正确;
对于C,若△ABC中,a=6,b=9,A=45°,则sinB= = ,
当B为锐角时满足sinB= 的角B要小于45°,
∴由a<b得A<B,可得B为钝角,三角形只有一解,故C不正确;
对于D,若△ABC中,b=9,c=10,B=60°,
则sinC= = <1,
因此存在角C=arcsin 或π﹣arcsin 满足条件,可得三角形有两解,故D不正确.
故选:B
【题目】某制造厂商10月份生产了一批乒乓球,从中随机抽取n个进行检查,测得每个球的直径(单位:mm),将数据进行分组,得到如表频率分布表:
分组 | 频数 | 频率 |
[39.95,39.97) | 6 | P1 |
[39.97,39.99) | 12 | 0.20 |
[39.99,40.01) | a | 0.50 |
[40.01,40.03) | b | P2 |
合计 | n | 1.00 |
(1)求a、b、n及P1、P2的值,并画出频率分布直方图(结果保留两位小数);
(2)已知标准乒乓球的直径为40.00mm,直径误差不超过0.01mm的为五星乒乓球,若这批乒乓球共有10000个,试估计其中五星乒乓球的数目;
(3)统计方法中,同一组数据常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00)作为代表,估计这批乒乓球直径的平均值和中位数.