题目内容

【题目】关于三角形满足的条件,下列判断正确的是(
A.a=7,b=14,A=30°,有两解
B.a=30,b=25,A=150°,有一解
C.a=6,b=9,A=45°,有两解
D.b=9,c=10,B=60°,无解

【答案】B
【解析】解:对于A,若△ABC中,a=7,b=14,A=30°,
则sinB= =1,可得B=90°,因此三角形有一解,得A不正确;
对于B,若△ABC中,a=30,b=25,A=150°,
则sinB= = ,而B为锐角,可得角B只有一个解,
因此三角形只有一解,得B正确;
对于C,若△ABC中,a=6,b=9,A=45°,则sinB= =
当B为锐角时满足sinB= 的角B要小于45°,
∴由a<b得A<B,可得B为钝角,三角形只有一解,故C不正确;
对于D,若△ABC中,b=9,c=10,B=60°,
则sinC= = <1,
因此存在角C=arcsin 或π﹣arcsin 满足条件,可得三角形有两解,故D不正确.
故选:B

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网