题目内容

【题目】如图1,在直角梯形中,ABCD,且.现以为一边向梯形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,如图2.

(Ⅰ)求证:BC⊥平面DBE

(Ⅱ)求点D到平面BEC的距离.

【答案】1)证明见解析;(2.

【解析】

试题(1)要证直线与平面垂直,题中翻折成平面与平面垂直,因此有平面,从而有一个线线垂直,另一个在梯形中由平面几何知识可证,从而得证线面垂直;(2)由(1)知平面与平面垂直,因此只要过于点,则可得的长就是点到平面的距离,在三角形中计算可得.

试题解析:(1)在正方形中,,又因为平面平面,且平面平面,所以平面,所以.在直角梯形中,,可得,在中,,所以,所以

所以平面.

2)因为平面,所以平面平面,过点的垂线交于点,则平面,所以点到平面的距离等于线段的长度.

在直角三角形中,,所以

所以点到平面的距离等于.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网