题目内容
【题目】如图1,在直角梯形中,AB∥CD,,且.现以为一边向梯形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,如图2.
(Ⅰ)求证:BC⊥平面DBE;
(Ⅱ)求点D到平面BEC的距离.
【答案】(1)证明见解析;(2).
【解析】
试题(1)要证直线与平面垂直,题中翻折成平面与平面垂直,因此有平面,从而有一个线线垂直,另一个在梯形中由平面几何知识可证,从而得证线面垂直;(2)由(1)知平面与平面垂直,因此只要过作于点,则可得的长就是点到平面的距离,在三角形中计算可得.
试题解析:(1)在正方形中,,又因为平面平面,且平面平面,所以平面,所以.在直角梯形中,,可得,在中,,所以,所以,
所以平面.
(2)因为平面,所以平面平面,过点作的垂线交于点,则平面,所以点到平面的距离等于线段的长度.
在直角三角形中,,所以,
所以点到平面的距离等于.
练习册系列答案
相关题目