题目内容
【题目】已知Sn为数列{an}的前n项和,a1=1,2Sn=(n+1)an , 若关于正整数n的不等式an2﹣tan≤2t2的解集中的整数解有两个,则正实数T的取值范围为
【答案】[1, )
【解析】解:∵a1=1,2Sn=(n+1)an ,
∴n≥2时,2Sn﹣1=nan﹣1 ,
∴2an=2(Sn﹣Sn﹣1)=(n+1)an﹣nan﹣1 , 整理得: = ,
∴ = ═…= = =1,
∴an=n.
不等式an2﹣tan≤2t2 , 化为:(n﹣2t)(n+t)≤0,t>0,
∴0<n≤2t,
关于正整数n的不等式an2﹣tan≤2t2的解集中的整数解有两个,
可知n=1,2.
∴1≤t< ,
所以答案是:[1, ).
【考点精析】利用数列的前n项和对题目进行判断即可得到答案,需要熟知数列{an}的前n项和sn与通项an的关系.
练习册系列答案
相关题目
【题目】在某城市气象部门的数据中,随机抽取100天的空气质量指数的监测数据如表:
空气质量指数t | (0,50] | (50,100] | (100,150] | (150,200) | (200,300] | (300,+∞) |
质量等级 | 优 | 良 | 轻微污染 | 轻度污染 | 中度污染 | 严重污染 |
天数K | 5 | 23 | 22 | 25 | 15 | 10 |
(1)若该城市各医院每天收治上呼吸道病症总人数y与当天的空气质量(取整数)存在如下关系 且当t>300时,y>500,估计在某一医院收治此类病症人数超过200人的概率;
(2)若在(1)中,当t>300时,y与t的关系拟合的曲线为,现已取出了10对样本数据(ti,yi)(i=1,2,3,…,10),且知 试用可线性化的回归方法,求拟合曲线的表达式.(附:线性回归方程中, , .)