题目内容
20.将两枚质地均匀的骰子各掷一次,设事件A={两个点数互不相同},B={出现一个5点},则P(B|A)=( )A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
分析 此是一个条件概率模型的题,可以求出事件A={两个点数都不相同}包含的基本事件数,与事件B包含的基本事件数,再用公式求出概率.
解答 解:由题意事件A={两个点数都不相同},包含的基本事件数是36-6=30,
事件B:出现一个5点,有10种,
∴P(B|A)=$\frac{10}{30}$=$\frac{1}{3}$,
故选:B.
点评 本题考查古典概率模型及条件概率计算公式,解题的关键是正确理解事事件A:两个点数互不相同,事件B:出现一个5点,以及P(B|A),比较基础.
练习册系列答案
相关题目
10.若两点P(-1,3)、Q(2,b)的距离为$\sqrt{13}$,则b的值为( )
A. | 2 | B. | 2或4 | C. | 1或5 | D. | 5 |