题目内容
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040534642.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040550588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040566333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040581749.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040597608.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040612399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040628357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040644318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040675456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040690419.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040706308.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240110407223559.png)
(1)求双曲线的离心率;
(2)过双曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040644318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040768300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040784309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040800292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040831313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040846774.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040862323.png)
(1) e=
. (2)λ=0或λ=-4.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040878639.png)
试题分析:(1)点P(x0,y0)(x0≠±a)在双曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040893704.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040909757.png)
由题意又有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040924587.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040940602.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040706308.png)
可得a2=5b2,c2=a2+b2=6b2,则e=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040878639.png)
(2)联立
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041002948.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240110410801253.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041112784.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011040846774.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240110411431033.png)
又C为双曲线上一点,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041158395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041174422.png)
化简得:λ2(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041205367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041221395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041236370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041252396.png)
又A(x1,y1),B(x2,y2)在双曲线上,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041205367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041221395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041236370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041252396.png)
由①式又有x1x2-5y1y2=x1x2-5(x1-c)(x2-c)=-4x1x2+5c(x1+x2)-5c2=10b2
得λ2+4λ=0,解出λ=0或λ=-4. 12分
点评:难题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题利用双曲线的标准方程,确定得到离心率。本题(II)在利用韦达定理的基础上,又利于点在曲线上得到λ的方程,使问题得解。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目