题目内容
如图,将边长为2的正方形ABCD沿对角线BD折叠,使的平面ABD⊥平面CBD,AE⊥平面ABD,且AE=,
(1) 求证:DE⊥AC
(2)求DE与平面BEC所成角的正弦值
(3)直线BE上是否存在一点M,使得CM//平面ADE,若存在,求M的位置,不存在,请说明理由。
(1) 求证:DE⊥AC
(2)求DE与平面BEC所成角的正弦值
(3)直线BE上是否存在一点M,使得CM//平面ADE,若存在,求M的位置,不存在,请说明理由。
(1)以A为原点,以射线AB,AC,AE为坐标轴建立空间直角坐标系,
则由C作平面ABD的垂线,垂足为F,则F为BC的中点,,所以点C的坐标为,
故:DE⊥AC(2)(3)存在M为BE的中点,使得CM//平面ADE
则由C作平面ABD的垂线,垂足为F,则F为BC的中点,,所以点C的坐标为,
故:DE⊥AC(2)(3)存在M为BE的中点,使得CM//平面ADE
试题分析:以A为原点,以射线AB,AC,AE为坐标轴建立空间直角坐标系,
则
由C作平面ABD的垂线,垂足为F,则F为BC的中点,,
所以点C的坐标为。
(1),故:DE⊥AC。
(2)
设平面BCE的法向量为,则,
设线面角为,
(3)设,则。若CM//平面ADE,则,所以,故存在M为BE的中点,使得CM//平面ADE。
点评:采用空间向量的方法求解立体几何问题的步骤:建立空间直角坐标系,写出相关点及相关向量的坐标,将坐标代入证明或计算求解的对应公式求解,空间向量法要求学生数据处理时认真仔细
练习册系列答案
相关题目