题目内容
如图,边长为4的正方形
与正三角形
所在的平面相互垂直,且
、![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010143894357.png)
分别为
、
中点.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240101439404121.png)
(1)求证:
;
(2)求直线
与平面
所成角的正弦值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010143862526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010143878437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010143878399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010143894357.png)
分别为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010143909365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010143925385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240101439404121.png)
(1)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010143956802.png)
(2)求直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010143956383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010143972480.png)
(1)证
即得证. (2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144003452.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010143987698.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144003452.png)
试题分析:(1)取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144018626.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144034474.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144050404.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144050531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240101440816496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144081440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144096507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144112168.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144128497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144143398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144159785.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144174710.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144128497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144206267.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144221436.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144237630.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144252542.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144050404.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144502724.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144252542.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144549511.png)
(2) 连接
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144564444.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144580438.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010144892419.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010143878437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010145110183.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010143862526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010145157586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010145173450.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010143862526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010145204465.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010143972480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010145235513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010143862526.png)
过点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010145298313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010145313613.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010145344303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010145360371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010145376720.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010145391501.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010145422895.png)
在正方形ABCD中,易知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010145438974.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240101454691250.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240101454851629.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010145500609.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240101455161500.png)
考点:与二面角有关的立体几何综合题;空间中直线与直线间的位置关系;直线与平面所成的角.
点评:本题考查异面直线垂直的证明,求二面角的大小,求直线与平面所成角的正弦值.考查运
算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综
合性强,难度大,易出错.是高考的重点.解题时要认真审题,仔细解答.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目