题目内容
设向量a=(sinx,sinx),b=(cosx,sinx),x∈.(1)若|a|=|b|.求x的值;(2)设函数f(x)=a·b,求f(x)的最大值.
(1)x=(2)
解析
已知函数,.(1)求函数的最小正周期;(2)在中,角、、的对边分别为、、,且满足,求的值.
已知向量,函数求函数的最小正周期T及值域
设平面向量a=(cosx,sinx),b=(cosx+2,sinx),x∈R.(1)若x∈(0,),证明:a和b不平行;(2)若c=(0,1),求函数f(x)=a·(b-2c)的最大值,并求出相应的x值.
某兴趣小组要测量电视塔AE的高度H(单位:m)如图所示,垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β.(1)该小组已测得一组α、β的值,算出了tanα=1.24,tanβ=1.20,请据此算出H的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精度.若电视塔的实际高度为125m,试问d为多少时,α-β最大?
已知函数f(x)=sin+cos,x∈R.(1)求f(x)的最小正周期和最小值;(2)已知cos(β-α)=,cos(β+α)=-,0<α<β≤,求证:[f(β)]2-2=0.
已知关于x的方程2x2-(+1)x+m=0的两根为sinθ和cosθ,且θ∈(0,2π).(1)求的值;(2)求m的值;(3)求方程的两根及此时θ的值.
已知在△ABC中,sinA+cosA=.(1)求sinA·cosA;(2)判断△ABC是锐角三角形还是钝角三角形;(3)求tanA的值.
已知函数f(x)=tan.(1)求f的值;(2)设α∈,若f=2,求cos的值.