题目内容
【题目】设函数f(x)= (x>0),观察:
f1(x)=f(x)= ,
f2(x)=f(f1(x))= ;
f3(x)=f(f2(x))= .
f4(x)=f(f3(x))=
…
根据以上事实,当n∈N*时,由归纳推理可得:fn(1)= .
【答案】 (n∈N*)
【解析】解:由已知中设函数f(x)= (x>0),观察:
f1(x)=f(x)= ,
f2(x)=f(f1(x))= ;
f3(x)=f(f2(x))= .
f4(x)=f(f3(x))=
…
归纳可得:fn(x)= ,(n∈N*)
∴fn(1)= = (n∈N*),
所以答案是: (n∈N*)
【考点精析】掌握数列的通项公式是解答本题的根本,需要知道如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
练习册系列答案
相关题目