题目内容
【题目】已知△ABC中,AB=AC,D是△ABC外接圆上 上的点(不与点A、C重合),延长BD至F.
(1)求证:AD延长线DF平分∠CDE;
(2)若∠BAC=30°,△ABC中BC边上的高为2+ ,求△ABC外接圆的面积.
【答案】
(1)证明:如图,∵A,B,C,D四点共圆,∴∠CDF=∠ABC.
又AB=AC,∴∠ABC=∠ACB,
且∠ADB=∠ACB,∴∠ADB=∠CDF,
又由对顶角相等得∠EDF=∠ADB,故∠EDF=∠CDF,
即AD的延长线DF平分∠CDE
(2)解:设O为外接圆圆心,连接AO并延长交BC于H,则AH⊥BC.连接OC,
由题意∠OAC=∠OCA=15°,∠ACB=75°,∴∠OCH=60°,
设圆半径为r,则r+ r=2+ ,得r=2,外接圆的面积为4π.
【解析】(1)根据A,B,C,D四点共圆,可得∠ABC=∠CDF,AB=AC可得∠ABC=∠ACB,从而得解.(2)设O为外接圆圆心,连接AO并延长交BC于H,则AH⊥BC.连接OC,设圆半径为r,则r+ r=2+ ,求出r,即可求△ABC外接圆的面积.
练习册系列答案
相关题目
【题目】抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:
运动员 | 第一次 | 第二次 | 第三次 | 第四次 | 第五次 |
甲 | 87 | 91 | 90 | 89 | 93 |
乙 | 89 | 90 | 91 | 88 | 92 |
则成绩较为稳定(方差较小)的那位运动员成绩的方差为 .