题目内容

19.如果一个n位十进制数a1a2a3…an的数位上的数字满足“小大小大…小大”的顺序,即满足:a1<a2>a3<a4>a5<a6…,我们称这种数为“波浪数”;从1,2,3,4,5组成的数字不重复的五位数中任取一个五位数$\overline{abcde}$,这个数为“波浪数”的个数是(  )
A.16B.18C.10D.8

分析 根据题意,分析可得在“波浪数”中,十位数字,千位数字中必有一个是5、另一数是3或4;据此分2种情况讨论,分别求出每种情况下的“波浪数”的个数,由分类计数原理计算可得答案.

解答 解:根据题意,分析可得在“波浪数”中,十位数字,千位数字中必有一个是5、另一数是3或4;
另一数是4时,将5与4放在千位、十位上,有A22种情况,剩余的1、2、3放在其余三个数位上,有A33种情况,
则此时的“波浪数”有A22A33=12个;
另一数3时,4、5必须相邻,有45132;45231;13254;23154四个“波浪数”.
则由1,2,3,4,5可构成数字不重复的五位“波浪数”个数为12+4=16;
故选:A.

点评 本题考查排列组合及简单计数问题,解题的关键是理解“波浪数”的含义,进而转化为排列、组合问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网